Buscar en este blog

martes, 2 de agosto de 2016

Criterios de divisibilidad

¿Cómo sabemos si un número es divisible por otro?

Lo primero que se nos puede ocurrir es hacer la división y ver si el resto es 0. Este método es correcto, pero si tenemos números muy grandes tardaremos mucho más tiempo en hacer la división y como el tiempo es oro, aquí te ofrecemos otras formas de comprobarlo.


Criterio de divisibilidad por 11:

Un número es divisible por 11, si la diferencia entre la suma de las cifras que ocupan los lugares impares y la de los pares es 0 o un múltiplo de 11. Ej: 121, 1331.

Veamos ahora como aplicar estos criterios en un ejemplo $(1288)$.
  • Es divisible por 2 porque termina en un número par $(8\,es\,par)$.
  • No es divisible por 3 porque la suma de sus cifras $1+2+8+8=19$ no es múltiplo de 3.
  • Es divisible por 4 porque sus dos últimas cifras 88 es un múltiplo de 4 $(88/4=22)$.
  • No es divisible por 5 porque no termina ni en 0 ni en 5.
  • No es divisible por 6 porque aunque es divisible por 2, no es divisible por 3.
  • Es divisible por 7 porque cumple el criterio. Veámoslo:
     En primer lugar, separamos el número en dos parte, dejando la última cifra en la segunda parte. 


     La última cifra la multiplicamos por 2. 


     Posteriormente restamos este número a la primera parte de la separación.

    
     Luego 1288 es divisible por 7 si lo es 112. Como 112 es un número grande y no sabemos
     directamente si es divisible por 7 o no, aplicaremos otra vez este criterio.

En primer lugar separamos la cifra de las unidades $$ 11 | 2 $$ posteriormente, al número sin la cifra de las unidades, le restamos el doble de las unidades. $$ 11-2*2 =11-4=7 $$ Como 7 es divisible por 7, entonces 1288 SI es divisible por 7.
  • Es divisible por 8 porque $(288/8=36)$.
  • No es divisible por 9 porque la suma de sus cifras $1+2+8+8=19$ no es múltiplo de 9. Otra forma de ver que no es divisible por 9 es porque para que lo fuera tendría que ser dos veces divisible por 3, lo cual es no cierto, ya que sabemos que no es divisible por 3.
  • No es divisible por 10 porque no termina en 0.
  • No es divisible por 11 porque la diferencia entre la suma de las cifras que ocupan los lugares impares y la de los pares es 1, que no es divisible por 11. 

Para comprobar que has aprendido los criterios de divisibilidad por 2, 3, 5, 9 y 10 entra aquí.
Para comprobarlos todos hazlo en la página de Smartick.

Ejercicio propuesto: Comprueba si son divisibles por 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 los siguientes números: 145, 3467, 12624, 212.

@antonio_arjona7

No hay comentarios:

Publicar un comentario en la entrada